5,934 research outputs found

    Black-hole scattering with general spin directions from minimal-coupling amplitudes

    No full text
    We study the link between classical scattering of spinning black holes and quantum amplitudes for massive spin-ss particles. Generic spin orientations of the black holes are considered, allowing their spins to be deflected on par with their momenta. We re-derive the spin-exponentiated structure of the relevant tree-level amplitude from minimal coupling to Einstein's gravity, which in the s→∞s\to\infty limit generates the black holes' complete series of spin-induced multipoles. The resulting scattering function is seen to encode in a simple way the known net changes in the black-hole momenta and spins at first post-Minkowskian order. We connect our findings to a rigorous framework developed elsewhere for computing such observables from amplitudes

    Surface Waves and Forced Oscillations in QHE Planar Samples

    Full text link
    Dispersion relations and polarizations for surface waves in infinite planar samples in the QHE regime are explicitly determined in the small wavevector limit in which the dielectric tensor can be considered as local. The wavelength and frequency regions of applicability of the results extends to the infrared region for typical experimental conditions. Then, standard samples with millimetric sizes seem to be able to support such excitations. Forced oscillations are also determined which should be generated in the 2DEG by external electromagnetic sources. They show an almost frequency independent wavevelength which decreases with the magnetic field. A qualitative model based in these solutions is also presented to describe a recently found new class of resonances appearing near the edge of a 2DEG in the QHE regime.Comment: latex file, 18 pages, 3 figures, spelling correcte

    Pseudoscalar pole light-by-light contributions to the muon (g−2)(g-2) in Resonance Chiral Theory

    Get PDF
    We have studied the P→γ⋆γ⋆P\to\gamma^\star\gamma^\star transition form-factors (P=π0,η,η′P=\pi^0,\eta,\eta') within a chiral invariant framework that allows us to relate the three form-factors and evaluate the corresponding contributions to the muon anomalous magnetic moment aμa_\mu, through pseudoscalar pole contributions. We use a chiral invariant Lagrangian to describe the interactions between the pseudo-Goldstones from the spontaneous chiral symmetry breaking and the massive meson resonances. We will consider just the lightest vector and pseudoscalar resonance multiplets. Photon interactions and flavor breaking effects are accounted for in this covariant framework. This article studies the most general corrections of order mP2m_P^2 within this setting. Requiring short-distance constraints fixes most of the parameters entering the form-factors, consistent with previous determinations. The remaining ones are obtained from a fit of these form-factors to experimental measurements in the space-like (q2≤0q^2\le0) region of photon momenta. The combination of data, chiral symmetry relations between form-factors and high-energy constraints allows us to determine with improved precision the on-shell PP-pole contribution to the Hadronic Light-by-Light scattering of the muon anomalous magnetic moment: we obtain aμP,HLbL=(8.47±0.16)⋅10−10a_{\mu}^{P,HLbL}=(8.47\pm 0.16)\cdot10^{-10} for our best fit. This result was obtained excluding BaBar π0\pi^0 data, which our analysis finds in conflict with the remaining experimental inputs. This study also allows us to determine the parameters describing the η−η′\eta-\eta' system in the two-mixing angle scheme and their correlations. Finally, a preliminary rough estimate of the impact of loop corrections (1/NC1/N_C) and higher vector multiplets (asym) enlarges the uncertainty up to aμP,HLbL=(8.47±0.16sta±0.091/NC−0.0+0.5asym)⋅10−10a_\mu^{P,HLbL} = (8.47\pm 0.16_{\rm sta}\pm0.09_{1/N_C}{}^{+0.5}_{-0.0}{}_{\rm asym})\cdot 10^{-10}.Comment: 43 pages, 5 figures. Accepted for publication in JHEP. New subsection involving error analysis and some minor change

    Helium- and Lithium-like ionic sequences: Critical charges

    Full text link
    In non-relativistic quantum mechanics we study the Coulomb systems of infinitely massive center of charge Z and two-three electrons: (Z,e,e)(Z,e,e) and (Z,e,e,e)(Z,e,e,e). It is shown that in both cases the total energy curve in ZZ is smooth, without any visible irregularities. Thus, for both systems the physical integer charges Z=1,2,...Z=1,2,... do not play a distinguished role as would be associated with charge quantization. By definition, a critical charge ZcrZ_{cr} is a charge which separates a domain of the existence of bound states from a domain of unbound ones (continuum). For both systems the critical charges are found, Zcr,2e=0.91085Z_{cr,2e}=0.91085 and Zcr,3e=2.009Z_{cr,3e}=2.009, respectively. Based on numerical analysis, the Puiseux expansion in fractional powers of (Z−Zcr)(Z-Z_{cr}) is constructed for both systems. Our results indicate the existence of a square-root branch point singularity at ZcrZ_{cr} with exponent 3/2. A connection between the critical charge and the radius of convergence of 1/Z-expansion is briefly discussed.Comment: 10 pages, LaTeX, typos corrected, Fig.1 added, a Note Added with calculated critical charge for 21S2^1S state for (Z,e,e)(Z,e,e) system, $Z_{cr,2e}^{(2^1S)}\ =\ 1.02

    Speeding up antidynamical Casimir effect with nonstationary qutrits

    Full text link
    The antidynamical Casimir effect (ADCE) is a term coined to designate the coherent annihilation of excitations due to resonant external perturbation of system parameters, allowing for extraction of quantum work from nonvacuum states of some field. Originally proposed for a two-level atom (qubit) coupled to a single cavity mode in the context of nonstationary quantum Rabi model, it suffered from very low transition rate and correspondingly narrow resonance linewidth. In this paper we show analytically and numerically that the ADCE rate can be increased by at least one order of magnitude by replacing the qubit by an artificial three-level atom (qutrit) in a properly chosen configuration. For the cavity thermal state we demonstrate that the dynamics of the average photon number and atomic excitation is completely different from the qubit's case, while the behavior of the total number of excitations is qualitatively similar yet significantly faster.Comment: 9 pages, 4 figure
    • …
    corecore